Cart (Loading....) | Create Account
Close category search window
 

Restoration of Poissonian Images Using Alternating Direction Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Figueiredo, M.A.T. ; Inst. Super. Tecnico, Inst. de Telecomun., Lisbon, Portugal ; Bioucas-Dias, J.M.

Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using state-of-the-art regularizers (such as those based upon multiscale representations or total variation) is still an active research area, since the associated optimization problems are quite challenging. In this paper, we propose an approach to deconvolving Poissonian images, which is based upon an alternating direction optimization method. The standard regularization [or maximum a posteriori (MAP)] restoration criterion, which combines the Poisson log-likelihood with a (nonsmooth) convex regularizer (log-prior), leads to hard optimization problems: the log-likelihood is nonquadratic and nonseparable, the regularizer is nonsmooth, and there is a nonnegativity constraint. Using standard convex analysis tools, we present sufficient conditions for existence and uniqueness of solutions of these optimization problems, for several types of regularizers: total-variation, frame-based analysis, and frame-based synthesis. We attack these problems with an instance of the alternating direction method of multipliers (ADMM), which belongs to the family of augmented Lagrangian algorithms. We study sufficient conditions for convergence and show that these are satisfied, either under total-variation or frame-based (analysis and synthesis) regularization. The resulting algorithms are shown to outperform alternative state-of-the-art methods, both in terms of speed and restoration accuracy.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.