By Topic

Detection of (Reversible) Myocardial Ischemic Injury by Means of Electrical Bioimpedance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Fritz Mellert ; Department of Cardiac Surgery , University of Bonn, Bonn, Germany ; Kai Winkler ; Christian Schneider ; Taras Dudykevych
more authors

The scope of this paper was to determine whether ischemic and reperfusion damage in cardiac surgery can be detected by measurement of electrical bioimpedance (EBI). Conventional pacing wires were replaced by pacing wires with sputtered iridium coating in order to reduce polarization associated with two-electrode impedance measurements. A custom-built bioimpedance analyzer (Osypka Medical GmbH, Berlin, Germany) measured the real part of impedance Re( Z) and the phase (φ) at three frequencies (1, 10, and 1000 kHz) and determined an extracellular space index (EZRI) as the quotient of Re( Z) at 1000 kHz and Re(Z) at 1 kHz. Our study included six patients (conventional coronary artery bypass graft, age 68.1 ± 8.3 years) subject to routine cardioplegic ischemia and reperfusion. Preischemic bioimpedance measurements were not impaired by interference of the beating heart. Intraischemically, bioimpedance at 1 kHz and phase at 10 kHz increased until opening of a bypass graft, which is probably induced by closure of gap junctions and cell swelling processes. After cross clamping, EZRI slowly decreased as an effect of mild cell swelling. After ischemia, values returned almost to baseline measurements, indicating sufficient reperfusion processes. Measurement of EBI correlates with myocardial ischemic injury and is applicable in a two-electrode setup providing low-polarization pacing wires.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 6 )