By Topic

Reactive Power Aspects in Reliability Assessment of Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenping Qin ; Coll. of Electr. & Power Eng., Taiyuan Univ. of Technol., Taiyuan, China ; Peng Wang ; Xiaoqing Han ; Xinhui Du

Reactive power plays a significant role in power system operation. However, in reliability evaluation, attention has seldom been paid to reactive power. In conventional power system reliability evaluations, the fixed maximum and minimum values are applied as the reactive power limits of generators. Failures of reactive power sources are rarely considered. The detailed causes of network violations for a contingency are also seldom studied. Real power load shedding is usually used to alleviate network violations without considering the role of reactive power. There are no corresponding reliability indices defined to represent the reactive power shortage in the existing techniques. Reactive power shortage and the associated voltage violations due to the failures of reactive power sources are considered in this paper. New reliability indices are proposed to represent the effect of reactive power shortage on system reliability. The reliability indices due to reactive power shortages have been defined and are separated with those due to real power shortages. Reactive power limits determined by real power output of a generator using P-Q curve have been studied. A reactive power injection technique is proposed to determine possible reactive power shortage and location. The IEEE 30-bus system has been modified and analyzed to illustrate the proposed technique. The results provide system planners and operators very important information for real and reactive power management.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 1 )