By Topic

A Novel Approach for Improving Off-Axis Pixel Performance of Terahertz Focal Plane Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Trichopoulos, G.C. ; Electr. & Comput. Eng. Dept., Ohio State Univ., Columbus, OH, USA ; Mumcu, G. ; Sertel, K. ; Mosbacker, H.L.
more authors

We present an antenna engineering approach to significantly improve off-axis detection properties of terahertz focal plane arrays (FPAs) behind an extended-hemispherical lens. In particular, antennas in the off-axis pixels in a large FPA were redesigned to exhibit tilted receiving patterns. The new antenna structure corrects for beam distortions in off-axis sensors due to the small lens size. Specifically, this approach is well suited for monolithic antenna structures integrated with high-sensitivity heterostructure backward diodes. Although the approach is demonstrated for 100- and 500-GHz FPAs, the presented technique is equally applicable to other planar antenna topologies and sensor materials that operate well into the terahertz regime. In addition, standard RF impedance-matching techniques were used to improve responsivity performance of the diode-coupled FPAs. The beam-correction techniques allow for a factor-of-5 larger size FPA for a fixed lens size. We also note that a tradeoff between Gaussicity and directivity becomes necessary for larger lenses. Thus, increasing the size of the FPA, without resorting to increasing the lens size, enables improved coupling efficiencies (Gaussicity) as well as better pixel resolution (directivity).

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 7 )