By Topic

A comparative study of various evolutionary algorithms used for fuzzy rule-based inference and learning systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dányádi, Z. ; Dept. of Telecommun. & Media Inf., Budapest Univ. of Technol. & Econ., Budapest, Hungary ; Balazs, K. ; Koczy, L.T.

The goal of this paper is to provide an overview of a variety of evolutionary algorithms, comparing their efficiency on fuzzy rule-based inference and learning. Fuzzy rule-based inference can be used to model a desirable outward behavior of a system when given a specific input, which, in the case of this comparative study, is determined by a set of samples, generated by sufficiently complex objective functions. Optimizing a fuzzy rule-based inference system is a matter of finding a rule base that is as close to imitating the desired behavior as possible. While the specific applications of evolutionary methods are endless, the objective functions used here remain general in nature.

Published in:

Computational Cybernetics and Technical Informatics (ICCC-CONTI), 2010 International Joint Conference on

Date of Conference:

27-29 May 2010