By Topic

Self-Organizing Potential Field Network: A New Optimization Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu Xu ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Shing, T.W.S.

This paper presents a novel optimization algorithm called self-organizing potential field network (SOPFN). The SOPFN algorithm is derived from the idea of the vector potential field. In the proposed network, the neuron with the best weight is considered as the target with the attractive force, while the neuron with the worst weight is considered as the obstacle with the repulsive force. The competitive and cooperative behaviors of SOPFN provide a remarkable ability to escape from the local optimum. Simulations were performed, compared, and analyzed on eight benchmark functions. The results presented illustrate that the SOPFN algorithm achieves a significant performance improvement on multimodal problems compared with other evolutionary optimization algorithms.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 9 )