By Topic

SPANC: Optimizing Scheduling Delay for Peer-to-Peer Live Streaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. -H. Kelvin Chan ; Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ; S. -H. Gary Chan ; Ali C. Begen

In peer-to-peer (P2P) live streaming using unstructured mesh, packet scheduling is an important factor in overall playback delay. In this paper, we propose a scheduling algorithm to minimize scheduling delay. To achieve low delay, our scheduling is predominantly push in nature, and the schedule needs to be changed only upon significant change in network states (due to, for examples, bandwidth change or parent churns). Our scheme, termed SPANC (Substream Pushing and Network Coding), pushes video packets in substreams and recovers packet loss using network coding. Given heterogeneous contents, delays, and bandwidths of parents of a peer, we formulate the substream assignment (SA) problem to assign substreams to parents with minimum delay. The SA problem can be optimally solved in polynomial time by transforming it to a max-weighted bipartite matching problem. We then formulate the fast recovery with network coding (FRNC) problem, which is to assign network coded packets to each parent to achieve minimum recovery delay. The FRNC problem can also be solved exactly in polynomial time with dynamic programming. Simulation results show that SPANC achieves substantially lower delay with little cost in bandwidth, as compared with recent approaches based on pull, network coding and hybrid pull-push.

Published in:

IEEE Transactions on Multimedia  (Volume:12 ,  Issue: 7 )