By Topic

Active Categorical Perception of Object Shapes in a Simulated Anthropomorphic Robotic Arm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tuci, E. ; Inst. of Cognitive Sci. & Technol., Italian Nat. Res. Council, Rome, Italy ; Massera, G. ; Nolfi, S.

Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a process whereby the brain constructs an internal representation of the world. The operational principles of active perception can be effectively tested by building robot-based models in which the relationship between perceptual categories and the body-environment interactions can be experimentally manipulated. In this paper, we study the mechanisms of tactile perception in a task in which a neuro-controlled anthropomorphic robotic arm, equipped with coarse-grained tactile sensors, is required to perceptually categorize spherical and ellipsoid objects. We show that best individuals, synthesized by artificial evolution techniques, develop a close to optimal ability to discriminate the shape of the objects as well as an ability to generalize their skill in new circumstances. The results show that the agents solve the categorization task in an effective and robust way by self-selecting the required information through action and by integrating experienced sensory-motor states over time.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:14 ,  Issue: 6 )