By Topic

A Dual-Population Genetic Algorithm for Adaptive Diversity Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taejin Park ; Center for U-Port IT Research and Education, Pusan National University, Busan, Korea ; Kwang Ryel Ryu

A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:14 ,  Issue: 6 )