By Topic

Performance and Reliability Study of Single-Layer and Dual-Layer Platinum Nanocrystal Flash Memory Devices Under NAND Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Singh, P.K. ; Dept. of Electr. Eng., Indian Inst. of Technol. Bombay, Mumbai, India ; Bisht, G. ; Auluck, K. ; Sivatheja, M.
more authors

Memory window (MW) and the retention of single-layer (SL) and dual-layer (DL) platinum (Pt) nanocrystal (NC) devices are extensively studied before and after program/erase (P/E) cycling. DL devices show better charge storage capability and reliability over the SL devices. Up to 50% improvement in the stored charge is estimated in the DL device over SL when P/E is performed at equal field. Excellent high temperature and postcycling retention capabilities of SL and DL devices are shown. The impact of the interlayer film (ILF) thickness on the retention of the DL structure is reported. While SL devices show poor P/E cycling endurance, DL cycling is shown to meet the minimum requirements of the multilevel cell (MLC) operation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 8 )