By Topic

Residual Generators for Fault Diagnosis Using Computation Sequences With Mixed Causality Applied to Automotive Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Svard, Carl ; Dept. of Electr. Eng., Linkoping Univ., Linköping, Sweden ; Nyberg, Mattias

An essential step in the design of a model-based diagnosis system is to find a set of residual generators fulfilling stated fault detection and isolation requirements. To be able to find a good set, it is desirable that the method used for residual generation gives as many candidate residual generators as possible, given a model. This paper presents a novel residual generation method that enables simultaneous use of integral and derivative causality, i.e., mixed causality, and also handles equation sets corresponding to algebraic and differential loops in a systematic manner. The method relies on a formal framework for computing unknown variables according to a computation sequence. In this framework, mixed causality is utilized, and the analytical properties of the equations in the model, as well as the available tools for algebraic equation solving, are taken into account. The proposed method is applied to two models of automotive systems, a Scania diesel engine, and a hydraulic braking system. Significantly more residual generators are found with the proposed method in comparison with methods using solely integral or derivative causality.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 6 )