By Topic

H_{\infty } Positive Filtering for Positive Linear Discrete-Time Systems: An Augmentation Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Li ; Dept. of Mech. Eng., Univ. of Hong Kong, Hong Kong, China ; Lam, J. ; Zhan Shu

In this note, we address the reduced-order positive filtering problem of positive discrete-time systems under the H performance. Commonly employed approaches, such as linear transformation and elimination technique, may not be applicable in general due to the positivity constraint of the filter. To cope with the difficulty, we first represent the filtering error system as a singular system by means of the system augmentation approach, which will facilitate the consideration of the positivity constraint. Two necessary and sufficient conditions are obtained in terms of matrix inequalities under which the filtering error system has a prescribed H performance. Then, a necessary and sufficient condition is proposed for the existence of the desired positive filters, and an iterative linear matrix inequality (LMI) algorithm is presented to compute the filtering matrices, which can be easily checked by standard software. Finally, a numerical example to illustrate the effectiveness of the proposed design procedures is presented.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 10 )