Cart (Loading....) | Create Account
Close category search window
 

Tunable Wavelength Conversion by XPM in a Silicon Nanowire, and the Potential for XPM-Multicasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Astar, W. ; Lab. for Phys. Sci. (LPS), College Park, MD, USA ; Driscoll, J.B. ; Xiaoping Liu ; Dadap, J.I.
more authors

Tunable wavelength conversion of a 10-Gb/s, return-to-zero on-off-keyed (RZ-OOK) signal has been carried out in a silicon (Si) nanowire waveguide (Si nanowire) using a pump-probe configuration and cross-phase modulation (XPM), followed by a tunable filter. This filter spectrally emulated the pass-band of a commercial 50-GHz DWDM arrayed waveguide grating (AWG). The tunability of the wavelength conversion process was demonstrated over a range of 20 nm, limited only by the amplifiers and the filter, while keeping the 10-9-BER receiver sensitivity penalty of the converted signal to a 0.5-dB maximum. A comprehensive model of wavelength conversion by XPM (XPM-WC) was developed, which took into account two-photon absorption, the Kerr effect, and free-carrier generation. The results of the model demonstrate good agreement with the experiment, especially with respect to the observed spectral broadening. The numerical model was also used to assess the dominant contribution among the various mechanisms within the context of XPM-WC, and to investigate the potential of multicasting by XPM in the nanowire.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 17 )

Date of Publication:

Sept.1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.