By Topic

Magnetic Studies of Photovoltaic Processes in Organic Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huidong Zang ; Dept. of Mater. Sci. & Eng., Univ. of Tennessee, Knoxville, TN, USA ; Ivanov, Ilia N. ; Hu, Bin

In this paper, we use magnetic field effects of photocurrent (MFEPC) to study the photovoltaic processes in pristine conjugated polymer, bulk heterojunction, and double-layer solar cells, respectively, based on poly(3-alkylthiophene) (P3HT). The MFEPC reveals that the photocurrent generation undergoes the dissociation in polaron pair states and the charge reaction in excitonic states in pristine conjugated polymers. As for the bulk-heterojunction solar cells consisting of electron donor P3HT and electron acceptor [6,6]-phenyl C61-butyric acid methyl ester (PCBM), the MFEPC indicates that the dissociated electrons and holes inevitably form the intermolecular charge-transfer (CT) complexes at donor and acceptor interfaces. Essentially, the photocurrent generation relies on the further dissociation of intermolecular CT complexes. Moreover, we use double-layer solar cell to further study the intermolecular CT complexes with well-controlled donor-acceptor interfaces based on double-layer P3HT/TiOx design. We find that the increase in free energies can significantly reduce the density of CT complexes upon thermal annealing.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 6 )