Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Efficient Terahertz Generation Within InGaN/GaN Multiple Quantum Wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Guan Sun ; Dept. of Electr. & Comput. Eng., Lehigh Univ., Bethlehem, PA, USA ; Guibao Xu ; Ding, Y.J. ; Hongping Zhao
more authors

We have investigated terahertz (THz) generation from InGaN/GaN multiple quantum wells (QWs). For the laser pump power of 400 mW at 391 nm, the highest THz output power is nearly 1 μW. Assuming that the output power quadratically scales up with the interaction length, such an output power corresponds to a normalized output power of 1.7nW/nm2. The normalized output power measured on the InGaN/GaN multiple quantum-well structures correspond to probably one of the highest values ever reported among all different semiconductor and nonlinear materials. Following our measurements of the output spectrum, power, and polarization angle as functions of average pump intensity, incident angle, and pump polarization angle, respectively, we have attributed the mechanism for the THz generation from the InGaN/GaN QWs to the radiation of the dipoles, following the generation of the spatially separated electrons and holes under the strong built-in electric fields inherently present in the nitride-based quantum-well structures.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 1 )