By Topic

Integrated process for defect-free copper plating and chemical-mechanical polishing of through-silicon vias for 3D interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Malta, D. ; RTI Int., Research Triangle Park, NC, USA ; Gregory, C. ; Temple, D. ; Knutson, T.
more authors

The fabrication of through-silicon vias (TSVs) is a major component in the development of three-dimensional (3D) integration technology and advanced 3D packaging approaches. The large diameter and length of TSVs, as compared to traditional interconnects, create some unique process challenges. Via plating and chemical-mechanical polishing (CMP) processes used in standard copper interconnect technology are generally not suitable for TSV fabrication. Therefore, efforts are being made to develop such processes specifically for TSV technology. This paper will describe the development of a void-free Cu electroplating process for TSV filling, along with CMP processing to remove the overburden layer and expose the Cu-filled vias for subsequent metallization. The focus of the paper will be the integration of the TSV plating and CMP processes, with discussion regarding observed integration challenges and their solutions. First, a Cu electroplating process was developed for defect-free, bottom-up filling of silicon vias from 20–200µm in diameter and 150–375µm deep, with aspect ratios from 1:1 to 8:1. Next, CMP tests were conducted using Cu-filled silicon vias of 50µm diameter and 150µm depth, designed for use in a MEMS wafer-level packaging application. These tests indicated that plating nonuniformity and Cu mound defects over filled vias caused significant CMP process issues. The plating process was then modified to eliminate these problems in the Cu films, resulting in improved CMP uniformity and reduced polishing time.

Published in:

Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th

Date of Conference:

1-4 June 2010