By Topic

Improving hard exudate detection in retinal images through a combination of local and contextual information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sánchez, C.I. ; Med. Centre, Univ. of Utrecht, Utrecht, Netherlands ; Niemeijer, M. ; Suttorp Schulten, M.S.A. ; Abràmoff, M.
more authors

Contextual information is of paramount importance in medical image understanding to detect and differentiate pathologies, especially when interpreting difficult cases. Current computer-aided detection (CAD) systems typically employ only local information to classify candidates, without taking into account global image information or the relation of a candidate with neighboring structures. In this work, we improve the detection of hard exudates in retinal images incorporating contextual information in the CAD system. The context is described by means of high-level contextual-based features based on the spatial relation with surrounding anatomical landmarks and similar lesions. Results show that a contextual CAD system for hard exudate detection is superior to an approach that uses only local information, with a significant increase of the figure of merit of the Free Receiver Operating Characteristic (FROC) curve from 0.840 to 0.945.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010