By Topic

Unsupervised segmentation of brain tissue in multivariate MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Constantin, A.A. ; Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Bajcsy, B.R. ; Nelson, C.S.

In this paper, we present an unsupervised, automated technique for brain tissue segmentation based on multivariate magnetic resonance (MR) and spectroscopy images, for patients with gliomas. The algorithm uses spectroscopy data for coarse detection of the tumor region. Once the tumor area is identified, further processing is done on the FLAIR image in the neighborhood of the tumor to determine the hyper-intense abnormality in this region. Areas of contrast enhancement and necrosis are then identified by analyzing the FLAIR abnormality in gadolinium-enhanced T1-weighted images. The healthy brain tissue is then segmented into white matter, gray matter, and cerebrospinal fluid (CSF) using a hierarchical graphical model whose parameters are estimated using the EM algorithm.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010