By Topic

An adaptive tracking algorithm of lung tumors in fluoroscopy using online learned collaborative trackers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Baiyang Liu ; Comput. Sci., Rutgers Univ., Piscataway, NJ, USA ; Lin Yang ; Kulikowski, C. ; Jinghao Zhou
more authors

Accurate tracking of tumor movement in fluoroscopic video sequences is a clinically significant and challenging problem. This is due to blurred appearance, unclear deforming shape, complicate intra- and inter- fractional motion, and other facts. Current offline tracking approaches are not adequate because they lack adaptivity and often require a large amount of manual labeling. In this paper, we present a collaborative tracking algorithm using asymmetric online boosting and adaptive appearance model. The method was applied to track the motion of lung tumors in fluoroscopic sequences provided by radiation oncologists. Our experimental results demonstrate the advantages of the method.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010