By Topic

Retrieval and classification of ultrasound images of ovarian cysts combining texture features and histogram moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sohail, A.S.M. ; Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC, Canada ; Rahman, M.M. ; Bhattacharya, P. ; Krishnamurthy, S.
more authors

This paper presents an effective solution for content-based retrieval and classification of ultrasound medical images representing three types of ovarian cysts: Simple Cyst, Endometrioma, and Teratoma. Our proposed solution comprises of the followings: extraction of low level ultrasound image features combining histogram moments with Gray Level Co-Occurrence Matrix (GLCM) based statistical texture descriptors, image retrieval using a similarity model based on Gower's similarity coefficient which measures the relevance between the query image and the target images, and use of multiclass Support Vector Machine (SVM) for classifying the low level ultrasound image features into their corresponding high level categories. Efficiency of the above solution for ultrasound medical image retrieval and classification has been evaluated using an inprogress database, presently consisting of 478 ultrasound ovarian images. Performance-wise, in retrieval of ultrasound images, our proposed solution has demonstrated above 77% and 75% of average precision considering the first 20 and 40 retrieved results respectively, and an average classification accuracy of 86.90%.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010