By Topic

Speed-up of learning in second order neural networks and its application to model synthesis of electrical devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Wilk ; Univ. of the Federal Armed Forces, Hamburg, Germany ; E. Wilk ; B. Morgenstern

We use neural networks to approximate the terminal behaviour of electrical devices, maintaining the parameter dependencies. To accelerate the approximation time, we have improved the adaption rule by an adaptive evaluation of the learning parameters on the base of second-order sigma-pi neurons. The network paradigm is then automatically transformed either into a netlist of an electrical subcircuit (for example, SPICE-simulation) or into a mathematical description language (for example, a behavioural simulator like SABER). Examples demonstrate the very accurate representation of nonlinear electrical devices for circuit simulation

Published in:

Neural Networks, 1996., IEEE International Conference on  (Volume:2 )

Date of Conference:

3-6 Jun 1996