By Topic

Motion-compensated reconstruction of gated cardiac SPECT images using a deformable mesh model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marin, T. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Wernick, M.N. ; Yongyi Yang ; Brankov, J.G.

We propose an algorithm for iterative, motion-compensated reconstruction of cardiac-gated SPECT. Dose limitations in SPECT lead to high level of noise in the projection data and further in the reconstructed images. Several reconstruction techniques have been reported to mitigate for the noise effects but they process each time frame individually and do not account for data temporal correlation. Advanced methods that allow for motion-compensated noise reduction use uniformly sampled pixels grid to represent images. Here we present a motion-compensated 4D reconstruction algorithm using content adaptive deformable mesh model (which is based on a deformable non-uniform sampling grid) for cardiac-gated SPECT. The proposed method tracks myocardial motion and utilizes the estimated motion to apply a cardiac-motion compensated temporal smoothing constraint during reconstruction. The temporal constraint is enforced between iterations of mesh based maximum-likelihood expectation-maximization algorithm. Specifically, temporal filtering is applied, in mesh domain, along the motion trajectory between iterations. The motion trajectory is estimation using our previously reported deformable mesh motion estimation technique. Visual comparisons as well as quantitative evaluation show that the proposed method achieves better noise reduction compared to several clinically used methods.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010