By Topic

Physically-based deformable image registration with material property and boundary condition estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huai-Ping Lee ; Dept. of Comput. Sci., Univ. of North Carolina, Chapel Hill, NC, USA ; Foskey, M. ; Niethammer, M. ; Ming Lin

We propose a new deformable medical image registration method that uses a physically-based simulator and an iterative optimizer to estimate the simulation parameters determining the deformation field between the two images. Although a simulation-based registration method can enforce physical constraints exactly and considers different material properties, it requires hand adjustment of material properties, and boundary conditions cannot be acquired directly from the images. We treat the material properties and boundary conditions as parameters for the optimizer, and integrate the physically-based simulation into the optimization loop to generate a physically accurate deformation automatically.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010