By Topic

Disease classification: A probabilistic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Rathi, Y. ; Med. Sch., Harvard Univ., Boston, MA, USA ; Malcolm, J. ; Bouix, S. ; McCarley, R.
more authors

We describe a probabilistic technique for separating two populations whereby analysis is performed on affine-invariant representations of each patient. The method begins by converting each voxel from a high-dimensional diffusion weighted signal to a low-dimensional diffusion tensor representation. Three orthogonal measures that capture different aspects of the local tissue are derived from the tensor representation to form a feature vector. From these feature vectors, we form a probabilistic representation of each patient. This representation is affine invariant, thus obviating the need for registration of the images. We then use a Parzen window classifier to estimate the likelihood of a new patient belonging to either population. To demonstrate the technique, we apply it to the analysis of 22 first-episode schizophrenic patients and 20 normal control subjects. With leave-many-out cross validation, we find a detection rate of 90.91% (10% false positives).

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010