By Topic

Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aurobrata Ghosh ; INRIA Sophia Antipolis-Méditerranée, Project Team Athena, Sophia Antipolis, France ; Rachid Deriche

Generalized Diffusion Tensor Imaging (GDTI) was developed to model complex Apparent Diffusivity Coefficient (ADC) using Higher Order Tensors (HOT) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile doesn't correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the Ensemble Average Propagator (EAP). Though interesting methods for estimating a positive ADC using 4th order diffusion tensors were developed, GDTI in general was overtaken by other approaches, e.g. the Orientation Distribution Function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper we present a novel closed-form approximation of the EAP using Hermite Polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate on 4th order diffusion tensors.

Published in:

2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Date of Conference:

14-17 April 2010