By Topic

Coronary artery motion modeling from 3D cardiac CT sequences using template matching and graph search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Dong Ping Zhang ; Dept. of Comput., Imperial Coll. London, London, UK ; Risser, L. ; Metz, C. ; Neefjes, L.
more authors

In this paper we present a method for coronary artery motion tracking in 4D cardiac CT data sets. The algorithm allows the automatic construction of a 4D coronary motion model from pre-operative CT which can be used for guiding totally-endoscopic coronary artery bypass surgery (TECAB). The proposed approach is based on two steps: In the first step, the coronary arteries are extracted in the end-diastolic time frame using a minimal cost path approach. To achieve this, the start and end points of the coronaries are identified interactively and the minimal cost path between the start and end points is computed using the A* graph algorithm. In the second stage the coronaries are tracked automatically through all other phases of the cardiac cycle. This is achieved by automatically identifying the start and end points in subsequent time points through a non-rigid template-tracking algorithm. Once the start and end points have been located, the minimal cost path is constructed in every time frame. We compare the proposed approach to two alternative approaches: The first one is based on a semi-automatic extraction of the coronaries with start and end points manually supplied in each time frame and the second approach is based on propagating the extracted coronaries from the end-diastolic time frame to other time frames using non-rigid registration. Our results show that the proposed approach performs significantly better than non-rigid registration based method and that the resulting motion model is comparable to the motion model constructed from semi-automatic extractions of the coronaries.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010