By Topic

A graphical model to determine the subcellular protein location in artificial tissues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Glory-Afshar, E. ; Dept. of Biomed. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Osuna-Highley, E. ; Granger, B. ; Murphy, R.F.

Location proteomics is concerned with the systematic analysis of the subcellular location of proteins. In order to perform comprehensive analysis of all protein location patterns, automated methods are needed. With the goal of extending automated subcellular location pattern analysis methods to high resolution images of tissues, 3D confocal microscope images of polarized CaCo2 cells immunostained for various proteins were collected. A three-color staining protocol was developed that permits parallel imaging of proteins of interest as well as DNA and the actin cytoskeleton. The collection is composed of 11 to 21 images for each of the 9 proteins that depict major subcellular patterns. A classifier was trained to recognize the subcellular location pattern of segmented cells with an accuracy of 89.2%. Using the Prior Updating method allowed improvement of this accuracy to 99.6%. This study demonstrates the benefit of using a graphical model approach for improving the pattern classification in tissue images.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010