By Topic

Real time tracking of 3D organ surfaces using single MR image and limited optical viewing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dan Wang ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Tewfik, A.H.

This paper presents the first demonstration of real time 3D tracking of organ deformation based on one-sided, limited view needlescopic optical imaging and a single pre-operative MRI/CT scan. The reconstruction is based on the empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of any given organ lie in lower dimensional spaces that can be learned during training. The paper discusses the details of the selection of the limited optical views and the registration of the real time partial optical images with the single pre-operative MRI/CT scan. Finally, it demonstrates the first experimental 3D reconstruction of ex-vivo kidneys based on a single MRI scan with 1 mm resolution and real time single side optical imagery achieving spatial resolution of better than 2 mm, even on the hidden organ surface, or less than 1.85% relative error.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010