By Topic

Computer-aided gleason grading of prostate cancer histopathological images using texton forests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Khurd, P. ; Siemens Corp. Res., Princeton, NJ, USA ; Bahlmann, C. ; Maday, P. ; Kamen, A.
more authors

The Gleason score is the single most important prognostic indicator for prostate cancer candidates and plays a significant role in treatment planning. Histopathological imaging of prostate tissue samples provides the gold standard for obtaining the Gleason score, but the manual assignment of Gleason grades is a labor-intensive and error-prone process. We have developed a texture classification system for automatic and reproducible Gleason grading. Our system characterizes the texture in images belonging to a tumor grade by clustering extracted filter responses at each pixel into textons (basic texture elements). We have used random forests to cluster the filter responses into textons followed by the spatial pyramid match kernel in conjunction with an SVM classifier. We have demonstrated the efficacy of our system in distinguishing between Gleason grades 3 and 4.

Published in:

Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on

Date of Conference:

14-17 April 2010