Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

An optimal power flow based dispatch model for distributed generation embedded network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yufeng Lin ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Jin Zhong ; Bollen, M.H.J.

The installation of distributed generation (DG) introduces challenges to distribution systems operation. The distribution network operator needs to schedule DG outputs considering some constraints, such as DG characteristics, reactive power control mode of generators, automatic voltage regulation, compensator and power quality standard, etc. Based on an optimal power flow model, this paper proposes a dispatch model for DG embedded distribution systems. The model is proposed basing on energy prices, weather forecasting and load forecasting. The objective is to minimize the electricity supply cost of the distribution company. The proposed model is tested in the 33-buse system. The results show that DisCo's cost and losses of the distribution system can be reduced by enhancing system operation flexibility.

Published in:

Environment and Electrical Engineering (EEEIC), 2010 9th International Conference on

Date of Conference:

16-19 May 2010