Cart (Loading....) | Create Account
Close category search window
 

Modeling Permeability Prediction Using Extreme Learning Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olatunji, S.O. ; Intell. Software Eng. Lab., Univ. Teknol. Malaysia, Skudai, Malaysia ; Selamat, A. ; Raheem, A.A.A.

In this work, an extreme learning machine (ELM) has been used in predicting permeability from well logs data have been investigated and a prediction model has been developed. The prediction model has been constructed using industrial reservoir datasets that are collected from a Middle Eastern petroleum reservoir. Prediction accuracy of the model has been evaluated and compared with commonly used artificial neural network and support vector machines (SVM). We have applied an extreme learning machine (ELM) for single-hidden layer feed-forward neural networks (SLFNs). As the ELM has the advantage of fast learning speed and good generalization performance. The simulation results have shown a promising prospect for extreme learning machine in the field of reservoir engineering in particular and oil and gas exploration in general, as it outperforms ANN and SVM.

Published in:

Mathematical/Analytical Modelling and Computer Simulation (AMS), 2010 Fourth Asia International Conference on

Date of Conference:

26-28 May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.