Cart (Loading....) | Create Account
Close category search window
 

Efficient Evaluation of k-Range Nearest Neighbor Queries in Road Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jie Bao ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Chi-Yin Chow ; Mokbel, M.F. ; Wei-Shinn Ku

A k-Range Nearest Neighbor (or kRNN for short) query in road networks finds the k nearest neighbors of every point on the road segments within a given query region based on the network distance. The kRNN query is significantly important for location-based applications in many realistic scenarios. For example, (1) the user's location is uncertain, i.e., user's location is modeled by a spatial region, and (2) the user is not willing to reveal her exact location to preserve her privacy, i.e., her location is blurred into a spatial region. However, the existing solutions for kRNN queries simply apply the traditional k-nearest neighbor query processing algorithm multiple times, which poses a huge redundant searching overhead. To this end, we propose an efficient kRNN query processing algorithm in this paper. Our algorithm (1) employs a shared execution approach to eliminate the redundant searching overhead, and (2) provides a parameter that can be tuned to achieve a tradeoff between the query processing performance and the storage overhead, while guaranteeing the user's exact k-nearest neighbors are included in the query answers. The experimental results show that our algorithm always outperforms the existing solution in terms of query response time, and the introduced tuning parameter is an effective way to achieve the tradeoff between the query response time and the storage overhead.

Published in:

Mobile Data Management (MDM), 2010 Eleventh International Conference on

Date of Conference:

23-26 May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.