By Topic

Temperature and supply voltage aware power modeling of analog functions at system level

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Suissa, A. ; LIP6 Lab., Univ. Pierre et Marie Curie, Paris, France ; Romain, O. ; Denoulet, J. ; Hachicha, K.
more authors

Nowadays a system level estimation method of power consumption for heterogeneous systems is a major concern. In this article, we introduce an empirical method for power consumption modeling of analog components at system level. The principal step of this method uses neural networks to approximate the mathematical curve of the power consumption as a function of the inputs, supply voltage and ambient temperature of an analog component. For an amplifier, we found an average error of 4.72% between our high level estimation and PSPICE power consumption results. This novel method is suitable for IP-based design and has three key features. Firstly, the method provides an online estimation of the instantaneous power consumption of analog blocks. Secondly, the method is generic as it can be applied to any analog component in any modeling and simulation environment. Thirdly, the method is suitable for the total (analog and digital) power consumption estimation of a heterogeneous system.

Published in:

Design and Technology of Integrated Systems in Nanoscale Era (DTIS), 2010 5th International Conference on

Date of Conference:

23-25 March 2010