By Topic

Missing Value Estimation for Mixed-Attribute Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaofeng Zhu ; University Technology Sydney, Sydney, Australia ; Shichao Zhang ; Zhi Jin ; Zili Zhang
more authors

Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets. Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:23 ,  Issue: 1 )