By Topic

High-Performance Scalable Flash File System Using Virtual Metadata Storage with Phase-Change RAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youngwoo Park ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Kyu Ho Park

Several flash file systems have been developed based on the physical characteristics of NAND flash memory. However, previous flash file systems have performance overhead and scalability problems caused by metadata management in NAND flash memory. In this paper, we present a flash file system called PFFS2. PFFS2 stores all metadata into virtual metadata storage, which employs Phase-change RAM (PRAM). PRAM is a next-generation nonvolatile memory and will be good for dealing with word-level read/write of small-size data. Based on the virtual metadata storage, PFFS2 can manage metadata in a virtually fixed location and through byte-level in-place updates. Therefore, the performance of PFFS2 is 38 percent better than YAFFS2 for small file read/write while matching YAFFS2 performance for large file. Virtual metadata storage is particularly effective in decreasing the burden of computational and I/O overhead of garbage collection. In addition, PFFS2 maintains a 0.18 second mounting time and 284 KB memory usage in spite of increases in NAND flash memory size. We also propose a wear-leveling solution for PRAM in virtual metadata storage and greatly reduce the total write count of NAND flash memory. In addition, the life span of PFFS2 is longer than other flash file systems.

Published in:

Computers, IEEE Transactions on  (Volume:60 ,  Issue: 3 )