By Topic

Multiprefix Trie: A New Data Structure for Designing Dynamic Router-Tables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sun-Yuan Hsieh ; National Cheng Kung University, Tainan ; Yi-Ling Huang ; Ying-Chi Yang

IP lookup affects the speed of an incoming packet and the time required to determine which output port the packet should be sent to; hence, it plays an important role in the design of router-tables. In this paper, we propose a new data structure, called a multiprefix trie, for use in designing dynamic router-tables. One key feature of our data structure is that each node can store more than one prefix, which reduces the number of memory accesses. When performing lookup, the structure can search more prefixes in one node and may find the longest matching prefix in an internal node rather than on a leaf. Moreover, when updating the router-table, it does not need to reconstruct the table. As a by-product, the proposed data structure minimizes the time required for dynamic router-table operations, including lookup, insertion, and deletion, and also reduces the number of memory accesses. We report the results of experiments conducted to compare the proposed data structure with other structures using the benchmark IPv4 prefix database AS4637 with 219,581 prefixes.

Published in:

IEEE Transactions on Computers  (Volume:60 ,  Issue: 5 )