Cart (Loading....) | Create Account
Close category search window
 

Nonlinear Inversion Schemes for Fluorescence Optical Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Freiberger, M. ; Inst. of Med. Eng., Graz Univ. of Technol., Graz, Austria ; Egger, H. ; Scharfetter, H.

Fluorescence optical tomography is a noninvasive imaging modality that employs the absorption and reemission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper, we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full 3-D nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newton-type iterations, present some details of the discretization by finite-element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate that the careful discretization of the methods derived on the continuous level allows us to obtain reliable, mesh-independent reconstruction algorithms.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.