Cart (Loading....) | Create Account
Close category search window
 

Information-Theoretic Approach for Analyzing Bias and Variance in Lung Nodule Size Estimation With CT: A Phantom Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gavrielides, M.A. ; Div. of Imaging & Appl. Math. (DIAM), U.S. Food & Drug Adm. (FDA), Silver Spring, MD, USA ; Rongping Zeng ; Kinnard, L.M. ; Myers, K.J.
more authors

This work is a part of our more general effort to probe the interrelated factors impacting the accuracy and precision of lung nodule measurement tasks. For such a task a low-bias size estimator is needed so that the true effect of factors such as acquisition and reconstruction parameters, nodule characteristics and others can be assessed. Towards this goal, we have developed a matched filter based on an adaptive model of the object acquisition and reconstruction process. Our model derives simulated reconstructed data of nodule objects (templates) which are then matched to computed tomography data produced from imaging the actual nodule in a phantom study using corresponding imaging parameters. This approach incorporates the properties of the imaging system and their effect on the discrete 3-D representation of the object of interest. Using a sum of absolute differences cost function, the derived matched filter demonstrated low bias and variance in the volume estimation of spherical synthetic nodules ranging in density from -630 to +100 HU and in size from 5 to 10 mm. This work could potentially lead to better understanding of sources of error in the task of lung nodule size measurements and may lead to new techniques to account for those errors.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.