Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Adaptive model predictive control of a hybrid motorboat using self-organizing GAP-RBF neural network and GA algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Salahshoor, K. ; Dept. of Autom. & Instrum., Pet. Univ. of Technol., Tehran, Iran ; Safari, E. ; Samadi, M.F.

The paper presents a novel adaptive neural-network based nonlinear model predictive control (NMPC) methodology for hybrid systems with mixed inputs. For this purpose an online self-organizing growing and pruning redial basis function (GAP-RBF) neural network is employed to identify the hybrid system using the unscented Kalman filter (UKF) learning algorithm. A receding horizon adaptive NMPC is then devised based on the identified GAP-RBF neural network model. The resulting nonlinear optimization problem is solved by a genetic algorithm (GA). The performance of the proposed adaptive model predictive control methodology is illustrated on a motorboat simulation case study.

Published in:

Advanced Computer Control (ICACC), 2010 2nd International Conference on  (Volume:2 )

Date of Conference:

27-29 March 2010