Cart (Loading....) | Create Account
Close category search window
 

Evolution of phase separation in In-rich InGaN alloys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pantha, B.N. ; Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, USA ; Li, J. ; Lin, J.Y. ; Jiang, H.X.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3453563 

Evolution of phase separation in InxGa1-xN alloys (x∼0.65) grown on AlN/sapphire templates by metal organic chemical vapor deposition has been probed. It was found that growth rate, GR, is a key parameter and must be high enough (>0.5 μm/h) in order to grow homogeneous and single phase InGaN alloys. Our results implied that conditions far from thermodynamic equilibrium are needed to suppress phase separation. Both structural and electrical properties were found to improve significantly with increasing GR. The improvement in material quality is attributed to the suppression of phase separation with higher GR. The maximum thickness of the single phase epilayer tmax (i.e., maximum thickness that can be grown without phase separation) was determined via in situ interference pattern monitoring and found to be a function of GR. As GR increases, tmax also increases. The maximum value of tmax for In0.65Ga0.35N alloy was found to be ∼1.1 μm at GR>1.8 μm/h.

Published in:

Applied Physics Letters  (Volume:96 ,  Issue: 23 )

Date of Publication:

Jun 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.