By Topic

Modulation recognition of communication signal based on wavelet RBF neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
He Bing ; Xi''an Hongqing Res. Inst. of Hi-Tech, Xi''an, China ; Liu Gang ; Ge Cun ; Gao Jiang

Modulation recognition of communication signal is to confirm the modulation style of communication signal in the condition with much noise. Wavelet transformation has a good localization characteristic in time-frequency domain, while the neural network has characteristics of self-studying, self-adaptation, and high stabilization and can improve the autoimmunization and intelligence of recognition. We adopted the ideal of combination of wavelet and neural network in the paper, firstly, we used the wavelet to decompose the signal, and then abstracted the characteristic through the wavelet coefficient, lastly we adopted the RBF(Radial Basis Funtion) nerual network to recognize 4 kinds of common digital communication signal. The simulation results indicate that the presented method performs well.

Published in:

Computer Engineering and Technology (ICCET), 2010 2nd International Conference on  (Volume:2 )

Date of Conference:

16-18 April 2010