By Topic

An improved image segmentation algorithm base on normalized cut

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Qiu-Bo Xi ; School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China

A novel approach for segmentation of images has been proposed by incorporating the advantages of the mean shift segmentation and the normalized cut partitioning methods. The proposed method preprocesses an image by using the mean shift algorithm to form segmented regions, region nodes are applied to form the weight matrix W instead of these regions, the Ncut method is then introduced for region nodes clustering. Since the number of the segmented region nodes is much smaller than that of the image pixels. The proposed algorithm allows a low-dimensional image clustering with significant reduction of the computational complexity comparing to conventional Ncut method based on direct image pixels. The experimental results also verify that the proposed algorithm behaves an improved performance comparing to the mean shift and the Ncut algorithm.

Published in:

Computer Engineering and Technology (ICCET), 2010 2nd International Conference on  (Volume:7 )

Date of Conference:

16-18 April 2010