By Topic

On reliability modeling of closed fault-tolerant computer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Balakrishnan, M. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Raghavendra, C.S.

It is observed that a large number of closed fault-tolerant systems modeled by a continuous-time Markov model referred to as the ARIES model have repeated eigenvalues. It is proven that the rate matrix representing the system is diagonalizable for every closed fault tolerant system modeled by ARIES. Consequently, the Lagrange-Sylvester interpolation formula is applicable to all closed fault-tolerant systems which ARIES models. Since the proof guarantees that the rate matrix is diagonalizable, general methods for solving arbitrary Markov chains can be tailored to solve the ARIES model for the closed systems directly

Published in:

Computers, IEEE Transactions on  (Volume:39 ,  Issue: 4 )