Cart (Loading....) | Create Account
Close category search window
 

Performance Characterization of a Silicon Drift Detector for Gamma Ray Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Jinhun Joung ; Res. Inst. of Health Sci., Korea Univ., Seoul, South Korea ; Kisung Lee ; Young Bok Ahn ; Jong Hee Lee
more authors

This study examined the intrinsic performance of silicon drift detector (SDD)-based gamma detectors under a variety of conditions. The prototype detector consisted of an array of seven hexagon-shaped SDDs optically coupled to a single slab of a scintillator. The active area of the SDD sensor was 15.2 mm in diameter, as measured from one vertex to another. The detector unit (SDD array, scintillator and preamplifier circuits) was operated in a cooling chamber with a typical operating temperature of -20°C. Nitrogen gas was supplied to the detector unit to prevent condensation. The drift time was measured using a LED pulse generation device and the longest drift time was measured to be 4.6 μsec from the edge of the sensor. The intrinsic energy resolution with a BBFe source for direct X-ray conversion was 3% at the 5.9 keV peak. For indirect conversion, i.e. photon detection, the energy resolution for CsI(Tl) and Nal(Tl) was 7.9% and 8.2% with a 13 μsec and 2.71 μsec shaping time, respectively. For this indirect conversion measurement, the temperature was set to -20°C and a 1 × 1 × 1 cm3 cube scintillator was coupled directly to the sensor. For the intrinsic spatial resolution measurement with a hole-phantom (3 × 2 mm diameter holes), the x and y directional profiles at a center hole were 2.2 and 2.1 mm in FWHM, respectively. Overall, the intrinsic performance of the SDD prototype is quite promising and advantages of this technology makes it highly feasible for use as a gamma ray detector.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.