By Topic

A Prototype Pixel Readout IC for High Count Rate X-Ray Imaging Systems in 90 nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szczygiel, R. ; Dept. of Meas. & Instrum., AGH Univ. of Sci. & Technol., Cracow, Poland ; Grybos, P. ; Maj, P.

We report on the design of a prototype IC called PX90 dedicated for readout of hybrid semiconductor detectors used for X-ray imaging applications. The PX90 has dimensions of 4 mm × 4 mm and was designed in CMOS 90 nm technology with 9 metal layers. The core of the IC is a matrix of 40 × 32 pixels with 100 m × 100 m pixel size. A 60 m × 60 m square passivation opening in each pixel allows connecting PX90 to a semiconductor detector using stud bump bonding technique. Each pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two second stage amplifiers, two discriminators and two 16-bit ripple counters. The stages are DC-coupled and the front-end electronics uses a fully differential readout scheme. To minimize the effective threshold spread at the discriminators inputs, one 8-bit and one 7-bit trim DACs are used. The PX90 can operate in continuous readout mode and in readout mode separate from exposure. The readout of each pixel has some additional functionality, like compression mode or readout of only given number of bits from each pixel. The data are read out via a single LVDS output with 200 Mbps rate.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 3 )