Cart (Loading....) | Create Account
Close category search window
 

Root-Cause Analysis of Peak Power Saturation in Pulse-Pumped 1100 nm Broad Area Single Emitter Diode Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Xiaozhuo Wang ; Leibniz-Instiut fur Hochstfrequenztechnik, Ferdinand-Braun-Inst., Berlin, Germany ; Crump, P. ; Wenzel, H. ; Liero, A.
more authors

Many physical effects can potentially limit the peak achievable output power of single emitter broad area diode lasers under high current, pulse-pumped operation conditions. Although previous studies have shown reliable operation to high pump levels (240 A, 300 ns, and 1 kHz), power was found to saturate. We present here results of a systematic study to unambiguously determine the sources of this power saturation. A combination of detailed measurements and finite element device simulation were used for the diagnosis. We find that the measured power saturation is dominated by electron leakage caused by band bending at high bias due to the low mobility of the p-type waveguide. However, the power saturation is only fully reproduced when longitudinal spatial hole-burning is included. Higher powers are expected to be achieved if higher energy barriers and lower confinement factors are used to mitigate leakage and longitudinal hole-burning, respectively.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.