Cart (Loading....) | Create Account
Close category search window
 

Probabilistic approximation of metric spaces and its algorithmic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bartal, Y. ; Int. Comput. Sci. Inst., Berkeley, CA, USA

This paper provides a novel technique for the analysis of randomized algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any, metric space to the randomized performance ratio for a set of “simple” metric spaces. We define a notion of a set of metric spaces that probabilistically-approximates another metric space. We prove that any metric space can be probabilistically-approximated by hierarchically well-separated trees (HST) with a polylogarithmic distortion. These metric spaces are “simple” as being: (1) tree metrics; (2) natural for applying a divide-and-conquer algorithmic approach. The technique presented is of particular interest in the context of on-line computation. A large number of on-line algorithmic problems, including metrical task systems, server problems, distributed paging, and dynamic storage rearrangement are defined in terms of some metric space. Typically for these problems, there are linear lower bounds on the competitive ratio of deterministic algorithms. Although randomization against an oblivious adversary has the potential of overcoming these high ratios, very little progress has been made in the analysis. We demonstrate the use of our technique by obtaining substantially improved results for two different on-line problems

Published in:

Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on

Date of Conference:

14-16 Oct 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.