By Topic

Multiple Incremental Decremental Learning of Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karasuyama, M. ; Dept. of Eng., Nagoya Inst. of Technol., Nagoya, Japan ; Takeuchi, Ichiro

We propose a multiple incremental decremental algorithm of support vector machines (SVM). In online learning, we need to update the trained model when some new observations arrive and/or some observations become obsolete. If we want to add or remove single data point, conventional single incremental decremental algorithm can be used to update the model efficiently. However, to add and/or remove multiple data points, the computational cost of current update algorithm becomes inhibitive because we need to repeatedly apply it for each data point. In this paper, we develop an extension of incremental decremental algorithm which efficiently works for simultaneous update of multiple data points. Some analyses and experimental results show that the proposed algorithm can substantially reduce the computational cost. Our approach is especially useful for online SVM learning in which we need to remove old data points and add new data points in a short amount of time.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 7 )