Cart (Loading....) | Create Account
Close category search window
 

PAUC: Power-Aware Utilization Control in Distributed Real-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaorui Wang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Xing Fu ; Xue Liu ; Zonghua Gu

CPU utilization control has recently been demonstrated to be an effective way of meeting end-to-end deadlines for distributed real-time systems running in unpredictable environments. However, current research on utilization control focuses exclusively on task rate adaptation, which cannot effectively handle rate saturation and discrete task rates. Since the CPU utilization contributed by a real-time periodic task is determined by both its rate and execution time, CPU frequency scaling can be used to adapt task execution times for power-efficient utilization control. In this paper, we present PAUC, a two-layer coordinated CPU utilization control architecture. The primary control loop uses frequency scaling to locally control the CPU utilization of each processor, while the secondary control loop adopts rate adaptation to control the utilizations of all the processors at the cluster level on a finer timescale. Both the two control loops are designed and coordinated based on well-established control theory for theoretically guaranteed control accuracy and system stability. Empirical results on a physical testbed demonstrate that our control solution outperforms a state-of-the-art utilization control algorithm by having more accurate control and less power consumption. Extensive simulation results also show that our solution can significantly improve the feasibility of utilization control.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.