By Topic

Measuring the Collective Potential of Populations From Dynamic Social Interaction Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cebrian, M. ; Media Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Lahiri, M. ; Oliver, N. ; Pentland, A.

In any society, is the way in which individuals interact, intentionally or unintentionally, designed to maximize global benefit, or does it result in a fundamentally non-egalitarian stratification of society, where a small number of individuals inevitably dominate? Our ability to observe and record interactions between individuals in real populations has improved dramatically with modern technological improvements, but it is still a difficult task to use this data to model cooperation and collaboration between individuals, and its global effect on the entire population. To shed light on these questions, we model an individual's value in society as an epistatic mathematical function of a set of binary choices, and the collective potential of a population as the expected value of an individual over time. Individuals try to selfishly improve their societal value by adopting the choices of their neighbors, constrained by the actual observed interaction topology and order. As a result, we are also able to investigate how far natural populations are from an optimal regime of functioning. We show that interaction topology has a large impact on collective potential, but the relative order of specific interactions seems to have a negligible effect.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:4 ,  Issue: 4 )